翻訳と辞書
Words near each other
・ Asplenium × wherryi
・ Aspley
・ Aspley Broncos
・ Aspley bus station
・ Aspley Football Club
・ Aspley Guise
・ Aspley Guise & Woburn Sands Golf Club
・ Aspley Guise railway station
・ Aspley Heath
・ Aspley State High School
・ Aspley, Nottingham
・ Aspley, Queensland
・ Aspley, West Yorkshire
・ Asplin
・ Asplund
Asplund space
・ Asplundh Tree Expert Company
・ Asplundia
・ Asplundia albicarpa
・ Asplundia allenii
・ Asplundia brunneistigma
・ Asplundia cayapensis
・ Asplundia ceci
・ Asplundia clementinae
・ Asplundia cuspidata
・ Asplundia domingensis
・ Asplundia fagerlindii
・ Asplundia helicotricha
・ Asplundia lilacina
・ Asplundia lutea


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Asplund space : ウィキペディア英語版
Asplund space
In mathematics — specifically, in functional analysis — an Asplund space or strong differentiability space is a type of well-behaved Banach space. Asplund spaces were introduced in 1968 by the mathematician Edgar Asplund, who was interested in the Fréchet differentiability properties of Lipschitz functions on Banach spaces.
==Equivalent definitions==

There are many equivalent definitions of what it means for a Banach space ''X'' to be an Asplund space:
* ''X'' is Asplund if, and only if, every separable subspace ''Y'' of ''X'' has separable continuous dual space ''Y''.
* ''X'' is Asplund if, and only if, every continuous convex function on any open convex subset ''U'' of ''X'' is Fréchet differentiable at the points of a dense ''G''''δ''-subset of ''U''.
* ''X'' is Asplund if, and only if, its dual space ''X'' has the Radon–Nikodým property. This property was established by Namioka & Phelps in 1975 and Stegall in 1978.
* ''X'' is Asplund if, and only if, every non-empty bounded subset of its dual space ''X'' has weak-∗-slices of arbitrarily small diameter.
* ''X'' is Asplund if and only if every non-empty weakly-∗ compact convex subset of the dual space ''X'' is the weakly-∗ closed convex hull of its weakly-∗ strongly exposed points. In 1975, Huff & Morris showed that this property is equivalent to the statement that every bounded, closed and convex subset of the dual space ''X'' is closed convex hull of its extreme points.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Asplund space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.